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An arbitrary Lagrangian–Eulerian finite element
approach to non-steady state turbulent fluid flow with

application to mould filling in casting
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SUMMARY

This paper presents a two-dimensional Lagrangian–Eulerian finite element approach of non-steady state
turbulent fluid flows with free surfaces. The proposed model is based on a velocity–pressure finite
element Navier–Stokes solver, including an augmented Lagrangian technique and an iterative resolution
of Uzawa type. Turbulent effects are taken into account with the k–o two-equation statistical model.
Mesh updating is carried out through an arbitrary Lagrangian–Eulerian (ALE) method in order to
describe properly the free surface evolution. Three comparisons between experimental and numerical
results illustrate the efficiency of the method. The first one is turbulent flow in an academic geometry, the
second one is a mould filling in effective casting conditions and the third one is a precise confrontation
to a water model. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

From the industrial point of view, numerical simulation of the mould filling stage of the
casting process is carried out following several goals. The first is to provide the downstream
thermo-mechanical and microstructural computations of the cooling stage with accurate initial
conditions in terms of temperature and the velocity field. Also, to be representative of the fluid
flow in order to give understanding to the occurrence of defects such as incomplete filling due
to early solidification of the metal, convection of inclusions, oxidation associated with
turbulence, mould wear, etc.

Most mould filling models are of fixed mesh type. This is, of course, the most convenient
way to approach non-steady state fluid flow, as the computational grid can remain fixed from
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the beginning to the end of the filling. However, in this case, the precision of the computation
is fully dependent on the mesh density. This implies that in the case of complex flow, the user
must have a fairly good idea a priori of the liquid flow in order to capture properly the critical
features of the flow: the jet impact onto a wall, waves, entrapment of air pocket, etc. In
addition, one of the main issues in such a formulation is the tracking of the free surface
separating the fluid domain from the rest of the cavity. Most codes [1–9] use the volume of
fluid (VOF) method [10]. It consists in solving the conservation equation dF/dt=0 of a
variable F whose values are 1 in filled regions and 0 elsewhere. F can be seen as a volumic
fraction of fluid and is often called the fill factor or the pseudo-concentration factor [11]. Two
fluids are actually considered: the flowing liquid of interest and a fictitious fluid in the empty
regions. This method suffers generally from numerical diffusion in the resolution of the free
surface tracking equation, which is of pure advective type. In addition, it is often mentioned
that the method can hardly handle the discontinuity of the material viscosity at the interface.
To prevent this difficulty, the viscosity value is smoothed around the interface, adding again
some imprecision. Because the value F=1

2 is supposed to represent the free surface, it results
in a smeared fluid surface. Another front-tracking method is the marker and cell (MAC)
method [12]. In this method, some marking particles close to the front are convected with the
computed velocity field. The updated location of the free surface is then deduced from the
updated locations of the markers. This method requires a great number of markers to be
precise but has been used in the frame of mould filling simulation [13–15]. Another problem
inherent to the fixed mesh methods is that it is difficult to take into account some terms of
mechanical loading applied to the fluid surface. This is the case of surface tension effects,
which need an explicit determination of the fluid surface as a mesh boundary to be
implemented in a proper way [16].

An alternative to the fixed mesh methods are the methods in which the mesh covers the fluid
domain only. The advantage of these moving mesh methods lies in the natural representation
of the free surfaces, yielding an accurate description of the front. They can be divided into two
categories: updated Lagrangian and Eulerian–Lagrangian methods. In the updated Lagran-
gian approach, the mesh is convected with the fluid during a given time step (each nodal point
is attached to a fluid particle). Hence, the mesh encounters enormous distortions during a
process such as a mould filling. Remeshing operations are needed very frequently, which is
detrimental to the computation time. However, application to mould filling has been carried
out [17]. The arbitrary Lagrangian–Eulerian (ALE) method [18,19] in which the mesh is
updated independently of the material fluid flow is much more flexible. Using this method, the
mesh is rearranged at every time increment, but keeping the same number of elements and
nodes and the same connectivity. Therefore, the number of full remeshing operations can be
significantly reduced. Hence, in ALE formulation, the nodal velocity field differs from the
velocity field of the fluid. This raises two main issues: first the determination of the mesh
velocity and second the treatment of the advection terms arising from this difference.
Regarding the first point, the same algorithms as for mesh generation and mesh improvement
are used, essentially based on Laplacian regularization in order to minimize element distortions
[20,21] or other node repartition methods [22,23]. The second point is actually not specific to
ALE methods, as the same problem must be treated in classical Eulerian formulations. There
are two main classes of methods [24]. On one hand, the methods of streamline upwind (SU)
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or streamline upwind Petrov–Galerkin type (SUPG). They consist of a modification of the test
functions of the weak form of the advection–diffusion equations. Such methods stabilize the
problem by adding some artificial numerical diffusion along streamlines [25]. On the other
hand, the splitting methods can be used, in which the advection–diffusion equations are split
into a pure advective problem and a pure diffusion problem. The treatment of the advection
problem may be of characteristic type. This method consists of computing the upstream
trajectory of the material particles [26]. A very similar method is the direct interpolation
method in which an auxiliary updated Lagrangian configuration is defined allowing the
computation of advected values by direct interpolation [27]. This method has been used in the
present work and will be detailed in the paper.

Hence, the ALE method seems to be promising for a mould filling application. However, to
our knowledge, its application to casting analysis is still in its infancy. We can quote the work
of Lewis et al. [16,28] and the approach formerly developed in References [29,30]. Both
formulations are limited to two-dimensional non-turbulent flow. The difference between them
lies in the fact that the first one is basically Eulerian (treatment of the advection terms in the
momentum equation combined with a Lagrangian free surface incrementation method),
whereas the second one is basically Lagrangian (direct time discretization of the total
derivative of the velocity in the momentum equation, plus a Lagrangian update combined with
rezoning). This latest formulation has served as a starting basis for the implementation of
turbulence modelling.

The objective of the paper is to present an application of the ALE method in the context of
isothermal non-steady state turbulent flow. In the next sections, we shall detail the governing
equations and boundary conditions, the two-dimensional finite element resolution and the
ALE scheme. Then, application to mould filling and validation with respect to the literature
and experimental results obtained on a water model and in casting conditions will be
illustrated and discussed.

2. GOVERNING EQUATIONS

2.1. Incompressible Newtonian fluid

Molten metallic alloys are assumed incompressible Newtonian fluids. Their governing equa-
tions consist of the viscous constitutive equation (1), defining the Cauchy stress tensor with
respect to the velocity gradient, and of the incompressibility condition (2)

s= −pI+2rno; , o; =1
2

(97+ (97)T) (1)

tr o; =9 ·7=0 (2)

Here, s is the Cauchy stress tensor, p is the hydrostatic pressure, I is the identity tensor, r is
the specific mass, n is the kinematic viscosity of the fluid, 7 is the velocity field and o; is the
strain rate tensor.
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The local momentum equation is

9 ·s+rg=rg (3)

where g is the gravity and g is the acceleration vector. Insertion of Equations (1) and (2) into
Equation (3) yields the classical incompressible and isothermal Navier–Stokes equations

Á
Ã
Í
Ã
Ä

r
d7
dt

−rn927+9p=rg

9 ·7=0
(4)

2.2. Turbulent fluid

During mould filling in casting, the metal flow is often turbulent. Most simulation codes
ignore the turbulence phenomena. Some of them simply consider an arbitrary increased
viscosity. Others include the simple mixing length model based on a definition of viscosity
from the norm of average velocity gradients and an arbitrary mixing length related to some
characteristic length of the flow. In view of mould filling modelling, we have preferred using
the simple but realistic approach to turbulence offered by the statistical turbulence models [31],
and more particularly the two-equation standard k–o turbulence model initiated by Launder
and Spalding [32]. Like all statistical models, it basically consists of a decomposition of the
pressure and velocity fields into a time-averaged component (denoted with an overbar) and a
turbulent fluctuating component (denoted with a prime). For instance, the decomposition of
the velocity field 7 is

7(x, t)= 7̄(x, t)+7%(x, t) (5)

where the time averaging is defined as

7̄(x, t)=
1
T
& t+T/2

t−T/2

7(x, t) dt (6)

T being a time interval assumed large enough with respect to the characteristic time of the
fluctuations and small compared with the variation time of the average value. The time
averaging of the Navier–Stokes equations themselves results then in the following Reynolds
equations:

Á
Ã
Í
Ã
Ä

r
d7̄
dt

−rn927̄+r9 ·(7%×7%)+9p̄=rg

9 · 7̄=0
(7)
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in which we can identify additional Reynolds stresses that are due to turbulent dissipation and
whose components are

Rij= −r6%i6%j (8)

According to the Boussinesq assumption, the Reynolds stress tensor R can be related to the
gradient of the time-averaged velocity field of the flow. This is achieved by the so-called
turbulent viscosity nT, defining a new constitutive equation of the turbulent fluid

R=rnT(97̄+ (97̄)T)−
2
3

rkI (9)

where k is the turbulent kinetic energy per unit of mass

k=
1
2
7% ·7% (10)

In the sequel, we shall not use the bar notation any more and 7 will denote the averaged
velocity field in case of turbulent flow. Hence, the Navier–Stokes equations (7) are now
replaced by

Á
Ã
Í
Ã
Ä

r
d7
dt

−r9 · [(n+nT)97 ]+9
�

p+
2
3

rk
�

=rg

9 ·7=0
(11)

The closure of the turbulent constitutive equations is achieved by defining the evolution law
of the turbulent kinematic viscosity. In the k–o model, nT depends on the turbulent kinetic
energy per unit of mass k and its rate of dissipation, o

nT=Cm

k2

o
(12)

The variables k and o are assumed to obey the two following advection–diffusion equations:

Á
Ã
Í
Ã
Ä

dk
dt

=9 ·
��

n+
nT

sk

�
9k
n

+Cm

k2

o
97 : (97+ (97)T)−o

do

dt
=9 ·

��
n+

nT

so

�
9o
n

+CmCo1k97 : (97+ (97)T)−Co2

o2

k

(13)

in which Cm=0.09, Co1=1.44, Co2=1.92, sk=1.0, so=1.3, are either empirical or experimen-
tally measured coefficients. The values of these parameters are applied rather universally with
the standard k–o turbulence model; alternative values have not been investigated in the frame
of this study.
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3. BOUNDARY CONDITIONS

One can refer to Figure 1 for the boundary conditions that can be taken into account in the
present model. V denotes the domain occupied by the fluid at a current time t of the filling
operation (boundary (V).

3.1. Boundary conditions for laminar Newtonian flow

� Inlet boundary, (Vinj.
Either a velocity distribution or a uniform pressure can be prescribed. Both can be

eventually time dependent. Denoting x as the position vector and n as the outward unit normal
vector to (Vinj, we have

7=7d(x, t) or sn= −Pd(t)n (14)

� Free surfaces, (Vfree.
A given normal stress vector can be applied

sn=Td (15)

This vector Td, colinear to the outward unit vector n, can result from surface tension
(modulus proportional to the average surface curvature) or compression of residual gases in
the cavity. However, the results presented here do not take into account such effects (Td=0).

� Fluid–mould interface, (Vmould.
A sticking contact condition can be considered (7=0). In practice, the near-wall region is

often affected by steep velocity gradients and the sticking contact condition can require a very
fine mesh near the wall. An alternative consists in using a wall friction law of Newtonian type
in which tangential sliding is permitted, the tangential stress vector depending on the tangential
velocity of the fluid according to the relation

Tf= −arn7t (16)

In addition the non-penetration condition has to be fulfilled

Figure 1. Boundary conditions for mould filling (schematic).
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7 ·n=0 (17)

3.2. Boundary conditions for turbulent flow

� Inlet boundary, (Vinj.
The inlet conditions of velocity and pressure are the same as for laminar flow. In the case

of prescribed velocity, the values of turbulent variables k and o at the inlet can be determined
as follows [32]. A certain ratio l of turbulent kinetic energy with respect to the energy of the
average flow is assumed, hence yielding the value of k at the inlet. Then a characteristic length
of turbulent eddies is chosen, for example, a fraction m of the inlet diameter D. This yields the
inlet value of o

k=l(7d)2, o=
Cmk3/2

mD
(18)

Typical values are [32] l=0.02 and m=0.005.
In case of imposed pressure, similar conditions are prescribed, provided that the order of

magnitude of the velocity is known. Otherwise, boundary conditions of Neumann type are
assumed

9k ·n=0, 9o ·n=0 (19)

� Free surfaces, (Vfree.
In addition to Equation (15), Neumann-type boundary conditions (19) are assumed for k

and o.
� Fluid–mould interface, (Vmould.
In turbulent flows, the viscous effects remain dominant in near-wall zones, so that these

regions are always affected by steep velocity gradients. The turbulent wall friction law is
defined as follows [33]. The basic idea is to remove the boundary layer from the computational
domain and to allow a non-zero sliding velocity at this new boundary.

In the near-wall region, the tangential velocity profile is governed by

7
u*

= f(y+) (20)

The function f(y+) is a function of the dimensionless distance to the wall defined by

y+ =d
u*
n

(21)

where d is the actual normal distance to the physical wall and u* is called the friction velocity
and is related to the tangential friction stress Tf by

Tf=ru*2 (22)
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Experiments show that the function f(y+) takes the form

f(y+)=
1
k

ln(Ey+) (23)

where E is a parameter depending on the wall roughness (E=9 for smooth walls). The
constant k is the von Karman constant (=0.41).

In the present approach, a simplified version [34] of the wall function method has been used
to approach the dominant viscous effects in the near-wall zones, by taking for y+ a constant
value (=100). This value is indeed characteristic of the turbulent sub-layer, in which turbulent
effects are significant.

The mechanical boundary conditions to be prescribed in this case consist of a friction law
and a non-penetration condition

Á
Ã
Í
Ã
Ä

sn− (sn ·n)n=Tf= −r
7

f(y+)2 7

7 ·n=0
(24)

Boundary conditions for turbulent variables k and o can then be established [31]

k=
u*2


Cm

=
72


Cm f(y+)2
, o=

u*3

kd
=

74

kny+f(y+)4 (25)

4. FINITE ELEMENT RESOLUTION

4.1. Time discretization

4.1.1. Configuration updating. Equations (11) are to be solved for the variables velocity and
pressure, at each time increment Dt of the mould filling simulation. This requires a time
integration scheme relating acceleration and velocity fields as well as a time integration scheme
for fluid configuration updating.

Let us consider a time increment [t, t+Dt ], during which the fluid domain evolves from Vt

to Vt+Dt. The configuration Vt and the velocity field 7 t are assumed to be known. The
following scheme is used:

Á
Ã
Í
Ã
Ä

7 t+Dt=7 t+Dtg t+Dt+O(Dt2)

x t+Dt=x t+Dt7 t+
Dt2

2
g t+O(Dt3)

(26)

A combination of the above relations yields the second-order accurate time integration
scheme, also called the Adams–Bashforth scheme (AB2)
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x t+Dt=x t+Dt
�3

2
7 t−

1
2
7 t−Dt�+O(Dt3) (27)

Before giving the resulting incremental resolution scheme, let us comment about the
coupling between mechanical and turbulence equations.

4.1.2. Staggered coupling scheme for mechanical and turbulence resolution. It should be noted
that, as nT and k depend on the velocity field according to Equation (13), the resolution for
velocity and pressure and the resolution for the turbulent variables are coupled. However, a
staggered coupling algorithm has been developed and has been proven acceptable and efficient
when compared with a fully coupled resolution [35]. Hence, when solving the velocity–pressure
problem, the turbulent variables are assumed known and fixed, and vice versa. The mechanical
problem appears then as a modified Navier–Stokes problem, the nominal viscosity n being
replaced by n+nT. Regarding pressure, it can be chosen to solve for the auxiliary pressure
p %=p+2

3rk, the actual pressure being recovered a posteriori.

4.1.3. Incremental resolution scheme. Therefore, the incremental resolution scheme consists of
the following steps:

� Configuration at time t : Vt, x t, 7 t, 7 t−Dt, kt, o t are known.
� Configuration updating: Vt+Dt: x t+Dt is defined according to Equation (27).
� Resolution of Equation (11) for 7 t+Dt and pt+Dt on Vt+Dt.
� Resolution of Equation (13) for kt+Dt and o t+Dt on Vt+Dt.
� Updating of variables: t� t+Dt, x t�x t+Dt, 7 t�7 t+Dt, 7 t−Dt�7 t, kt�kt+Dt, o t�o t+Dt.
� Next increment (go back to first step).

4.1.4. Time discretization of k–o equations. The advection–diffusion equations of the turbu-
lence model are highly coupled and have to be integrated over the time step. Regarding time
integration, the Crank–Nicolson time integration scheme has been found appropriate [35].
Hence, taking, for instance, the equation for k, the following quantities are defined:

k*=kt+Dt/2=
kt+kt+Dt

2
, k: *=

�dk
dt
�t+Dt/2

=
kt+Dt−kt

Dt
(28)

The system to be solved is then transformed into

Á
Ã
Í
Ã
Ä

2(k*−kt)
Dt

=9 ·
��

n+
Cmk*2

sko*
�
9k*

n
+Cm

k*2

o*
97 : (97+ (97)T)−o*

2(o*−o t)
Dt

=9 ·
��

n+
Cmk*2

soo*
�
9o*

n
+CmCo1k*97 : (97+ (97)T)−Co2

o*2

k*

(29)

in which 7 denotes the latest computed velocity field (i.e. 7 t+Dt according to the previous
incremental resolution scheme).

Finally, a linearization of this set of equations has been achieved by
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– using the values of k and o computed at the end of the previous increment in the diffusion
and production terms of both equations;

– using the approximation o*2:2o to*− (o t)2 in the dissipation term of o ;
– substituting (o t/kt)k* for o in the equation for k in order to get a better stability, after

Koobus [36].

The final expression of the linearized discrete differential equations is

Á
Ã
Í
Ã
Ä

2(k*−kt)
Dt

=9 ·
��

n+
nT

t

sk

�
9k*

n
+nT

t 97 : (97+ (97)T)−
o t

k t k*

2(o*−o t)
Dt

=9 ·
��

n+
nT

t

so

�
9o*

n
+CmCo1kt97 : (97+ (97)T)−2Co2

o to*
kt +Co2

(o t)2

kt

(30)

After resolution (see Section 4.4), the values at time t+Dt are obtained by

kt+Dt=2k*−kt, o t+Dt=2o*−o t (31)

4.2. Weak form of the mechanical equations

According to the above-mentioned time integration scheme, at each time step Equations (11)
have to be solved for 7 t+Dt and pt+Dt on the updated geometry Vt+Dt. Let us first define the
following spaces:

H1(Vt+Dt)={q�L2(Vt+Dt)�9q� (L2(Vt+Dt))2} (32)

q(Vt+Dt)={7� (H1(Vt+Dt))2�7=7d on (V6t+Dt} (33)

q0(Vt+Dt)={7� (H1(Vt+Dt))2�7=0 on (V6t+Dt} (34)

where (V6 denotes the part of the boundary where Dirichlet conditions are prescribed on the
velocity field (see Section 3). q is the space of ‘kinematically admissible’ velocity fields and q0

is the space of ‘zero kinematically admissible’ velocity fields.
Taking into account the previous time discretization, the application of the weighted residual

method to the above mentioned momentum equations and incompressibility constraint leads
to the following weak form:

Ö7*�q0
&

Vt+Dt

r
1
Dt

(7 t+Dt−7 t) ·7* dV+
&

Vt+Dt

2r(n+nT
t )o; t+Dt: o; * dV

−
&

Vt+Dt

p %t+Dt9 ·7* dV−
&
(Vt+Dt

T ·7* dS−
&

Vt+Dt

rg ·7* dV=0 (35)
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Öp*�L2(Vt+Dt)
&

Vt+Dt

p*9 ·7 t+Dt dV=0 (36)

with

p %t+Dt=pt+Dt+
2
3

rkt (37)

4.3. Velocity–pressure finite element formulation

The fluid domain V is discretized with P2+/P1 triangular finite elements proposed by Fortin
and Fortin [37] (Figure 2): quadratic interpolation of velocity plus one central node associated
with bubble-type cubic interpolation function, discontinuous linear pressure. The addition of
the central node allows the element to pass the Brezzi–Babuška condition [38]. It can be shown
[37] that the additional degrees of freedom associated with the bubble can be eliminated at the
element level, resulting in a simpler treatment similar to the constant pressure P2/P0 element.

The velocity and pressure fields are interpolated in the following way:

7= %
Nbnoe

n=1

NnVn, p= %
Nbpre

k=1

N( kPk (38)

where Nbnoe and Nbpre are the number of interpolation nodes for velocity (interpolation
function N) and pressure (interpolation function N( ) respectively.

Injection of finite element interpolations (38) into Equations (35) and (36) results in the
following two linear systems, in which V and P are the unknown nodal velocity and pressure
vectors (2 ·Nbnoe and Nbpre components respectively)

Á
Ã
Í
Ã
Ä

� r

Dt
M+A

�
V+STP=C

SV=0
(39)

where M is the mass matrix and S the matrix of the discrete divergence operator. The
components of the different matrices are the following:

Figure 2. P2+/P1 finite element.
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Alkmn=
&

V
2r(n+nT)Bmn : BlkdV+

&
(Vmould

r
7 t

f(y+)2 NnNkdlm dS (40)

Mlkmn=
&

V
NkNndlm dV (41)

Slmn=
&

V
−N( l tr(Bmn) dV (42)

Clk=
&

V
rglNk dV+

&
(Vfree

Tl
dNk dS+

&
V

r

Dt
Vln

t NnNk dV (43)

In the previous equations, indices k and n vary from 1 to Nbnoe, index l varies from 1 to
Nbpre ; indices l and m vary from 1 to 2. The convention of implicit summation of repeated
indices is applied, as in the sequel. d is the Kronecker delta and B denotes the discrete
differential operator defined by

Bln=
(o;
(Vln

or, in components

Bijln=
(o; ij
(Vln

=
1
2
�(Nn

(xj

dil+
(Nn

(xi

djl

�
(44)

Equations (39) can be seen as a saddle-point problem of the following Lagrangian:

L(V, P)=
1
2

VT� r

Dt
M+A

�
V+VTSTP−VTC (45)

In practice the augmented Lagrangian Lr(V, P) is used, including an augmentation term
resulting from a discrete penalization of the incompressibility constraint

Lr(V, P)=L(V, P)+
xp

2
r(n+nT)VTSTM( −1SV (46)

where xp is a large positive constant and M( is the mass matrix associated with pressure
interpolation functions

M( mn=
&

V
N( mN( n dV (47)

The saddle-point of Lr is the same as for L but provides higher convergence rates of the
Uzawa algorithm described hereunder [39]. The saddle-point of the augmented Lagrangian is
reached by solving the following set of equations:
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Á
Ã
Í
Ã
Ä

� r

Dt
M+A+xpr(n+nT)STM( −1S

�
V+STP=C

SV=0
(48)

The Uzawa algorithm is based on the following iterative velocity and pressure corrections:

� Initialization: i=0, initial P (0)

� Iteration (i ): i= i+1
� Step (1) velocity resolution

V (i)=
� r

Dt
M+A+xpr(n+nT)STM( −1S

n−1

(C−STP (i−1)) (49)

� Step (2) pressure correction

P (i)=P (i−1)+vr(n+nT)M( −1SV (i) (50)

� Repeat iteration until convergence

SV (i)Boc (51)

The resolution of system (49) is performed by a Crout direct elimination method. It should be
noted that only one LDU decomposition is needed (achieved at the first iteration). The
convergence is generally reached within four iterations. Usually, we take v=xp=106. Thanks
to the discontinuous pressure discretization, the matrix M( can be inverted at the element level,
before assembling. In the limit case where the pressure field is constant per element (P0
approximation), which is achieved after elimination of bubble degrees of freedom, M( is a
diagonal matrix, the eth term being the volume of element e. Therefore, this formulation is
quite appropriate and efficient.

4.4. Finite element resolution of turbulence equations

The P2-Lagrange six-node quadratic interpolation is used to discretize the turbulent variables
k and o

k= %
Nbnoe

n=1

Nnkn, o= %
Nbnoe

n=1

Nnon (52)

The application of the Galerkin formulation to Equation (30) yields the following sets of
equations:
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!HkK*=Fk

H oE*=F o
(53)

where K* and E* are the global vectors whose components are the nodal values of variables
k* and o* respectively. Matrices H and vectors F have the following expression:

Hij
k=

&
V

�
n+

nT
t

sk

� (Ni

(xl

(Nj

(xl

dV+
&

V

� 2
Dt

+
o t

k t

�
NiNj dV (54)

Hij
o =

&
V

�
n+

nT
t

so

� (Ni

(xl

(Nj

(xl

dV+
&

V

� 2
Dt

+2Co2

o t

k t

�
NiNj dV (55)

Fi
k=

&
V

�2kt

Dt
+nT

t 97 : [97+ (97)T]
�

Ni dV (56)

Fi
o=

&
V

�
CmCo1kt97 : [97+ (97)T]+Co2

(o t)2

kt +
2o t

Dt
�

Ni dV (57)

At this stage it should be noted that the variables k and o are positive. However, the
combination of time integration and numerical discretization can result in too small or even
negative solutions. In order to remedy such problems, the values are filtered and corrected
according to the following rules. The strategy is similar to the one developed by Pelletier et al.
[40]:

� A lower bound for k is defined, corresponding to a fraction ak of the current maximum
turbulent kinetic energy

if kBkmin–crit, then k=akkmax (58)

� The dissipation rate o is chosen such that the turbulent viscosity should be a fraction an of
the laminar viscosity n

if oBocrit, then o=
Cmk2

ann
(59)

5. ARBITRARY EULERIAN–LAGRANGIAN FORMULATION

5.1. Mesh updating

The updating of fluid particles is defined by Equations (26) and (27). In a Lagrangian finite
element method, each node n of the discretization of the fluid domain V should be updated
with the following time integration scheme:
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Xn
t+Dt=Xn

t +DtVn
t +

Dt2

2
Gn

t =Xn
t +Dt

�3
2

Vn
t −

1
2

Vn
t−Dtn=Xn

t +Un
mat (60)

where Un
mat denotes the material incremental displacement of node n.

As mentioned earlier, in an ALE formulation, the displacement of the nodes differ from the
displacement of the material particles. In the present ALE formulation, the nodes are displaced
incrementally with mesh displacements Umesh that do not depend on the fluid particles
displacements Umat, except on the free surface, as explained hereunder.

5.1.1. Update of internal nodes. The updating procedure of internal nodes is based on a mesh
regularization method initially developed by Magnin [23]. The incremental displacements of
apex nodes (a quadratic triangle has three apex nodes and three mid-edge nodes) are calculated
in order to minimize the distortion of the updated mesh. This can be achieved by writing that,
after updating, each internal apex node n should be as close as possible to the centre of gravity
of the polygon joining the centres of gravity of elements e surrounding the node n. Denoting
nbe(n) as the number of elements surrounding n and assuming for simplicity that surrounding
elements are numbered from 1 to nbe(n), this can be expressed as follows:

Xn
t+Dt=

1
nbe(n)

%
nbe(n)

e=1

%
m�e

1
3

Xm
t+Dt (61)

in which the last sum is extended over the three apex nodes m of element e. Taking into
account the fact that the number of neighbouring apex nodes nb6(n) is equal to the number of
surrounding elements and that each neighbouring apex node belongs to two surrounding
elements, this can be rewritten in terms of neighbouring apex nodes

Xn
t+Dt=

1
nb6(n)

%
nb6(n)

6=1

�1
3

Xn
t+Dt+

2
3

X 6t+Dt�=
1
3

Xn
t+Dt+

1
nb6(n)

%
nb6(n)

6=1

2
3

X 6t+Dt (62)

Introducing now the incremental mesh displacement, we have

Xn
t +Un

mesh=
1
3

(Xn
t +Un

mesh)+
2

3nb6(n)
%

nb6(n)

6=1

(X 6t +U 6mesh) (63)

The regularization is then performed on the basis of this relation. The procedure is iterative of
Jacobi-type and consists of computing, at each iteration n, the estimates of the nodal mesh
displacements in the following way:

Un
mesh(n+1)= −

2
3

Xn
t +

1
3

Un
mesh(n)+

2
3nb6(n)

%
nb6(n)

6=1

(X 6t +U 6mesh(n)) (64)
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This is repeated up to stagnation (i.e. minor relative corrections of the nodal displacements)
and the updating scheme of internal apex nodes is then applied, providing the definition of the
mesh velocity vectors (here Dt2 is denoted Dt for the sake of simplicity)

Xn
t+Dt=Xn

t +Un
mesh(�)=Xn

t +DtVn
mesh (65)

5.1.2. Update of free surface nodes. The same kind of regularization is applied on the free
surface, with the additional constraint that the incompressibility of the fluid should be
preserved, i.e. the mesh velocity field should give rise to the same material flux through the free
surface as the material velocity field. Rewriting Equation (60) as Xn

t+Dt=Xn
t +DtVn

mat, the
conservation condition is approached by the fulfilment of the following condition by the mesh
velocity vector of each node n of the free surface, as illustrated by Figure 3

Vn
mesh ·nn

t+Dt=Vn
mat ·nn

t+Dt (66)

For nodes located at angular points of the free surface, the mesh velocity is prescribed equal
to the material velocity field (Figure 3). For other nodes, Equation (66) determines the normal
components of Vmesh. In the tangent direction, the previous regularization technique is applied
by projection of Equation (61)

DtVn
mesh(n+1) ·tn

(n)=
�1

2
(Xn−

t +Xn+
t )−Xn

tn ·tn
(n)+

Dt
2

(Vn−
mesh(n)+Vn+

mesh(n)) ·tn
(n) (67)

Here, Xn− and Xn+ denote the position vectors of the two neighbours of node n on the free
surface, tn is the unit tangent vector at node n associated with nn.

Figure 3. Free surface mesh regularization.
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Finally, after all internal apex nodes and free surface nodes have been displaced, the position
of internal mid-edge nodes is determined by the relation

Xm/n
t+Dt=

1
2

(Xm
t+Dt+Xn

t+Dt) (68)

It should be noted that the mesh updating described above enables us to delay mesh
degeneracy but cannot avoid it totally. Should elements be too distorted, a completely new
mesh is built using an automatic remeshing technique [41]. This mesh generator has been
improved by Glut [42] to deal with self-contact, which often occurs in casting: breaking waves,
flow around obstacles.

5.2. Transport phase

In the frame of the ALE formulation, the total derivative of any material variable B can be
expressed by

dB
dt

=
(B
(t
)
mesh

+9B ·(7mat−7mesh) (69)

where the partial derivative in the right-hand side denotes the rate of variation of B at a given
point of the mesh. As already said in the introduction, in the literature this expression is
frequently directly implemented in the weak form of the mechanics, turbulence and heat
transfer equations. SU or SUPG techniques are then used, stabilizing the advective terms by
using artificial diffusion along streamlines [25].

Alternative methods consist in addressing directly the material derivative of variable B. This
requires at each nodal point n, of co-ordinate vector x t+Dt, the determination of the value of
B, at previous time t, for the particle located at x t+Dt at time t+Dt. This value is denoted
Bmat, t(x t+Dt). A first-order backward Euler scheme on the particle trajectory during the time
increment [t, t+Dt ] provides the following approximation of the material derivative:

dB
dt
:

1
Dt

(Bt+Dt(x t+Dt)−Bmat, t(x t+Dt)) (70)

The calculation of Bmat,t(x t+Dt) can be achieved using, for instance, a characteristic method
[23,26,43]. In the present study, a ‘pseudo-Lagrangian’ method has been adopted (Figure 4). In
this method, an auxiliary Lagrangian update VL

t+Dt of the configuration is used. It is defined
by Equation (60). Considering the position x t+Dt, the associated element e of VL

t+Dt and local
co-ordinates (j, h) in this element are determined. Then, since VL

t+Dt is a material update of
Vt, the value Bmat, t(x t+Dt) is computed by direct interpolation in element e of Vt

Bmat, t(x t+Dt)=Nn(j, h)Bn
t (71)

This technique is applied to determine the following quantities:
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Figure 4. Illustration of transport procedure by use of a pseudo-Lagrangian update and direct interpola-
tion.

Figure 5. Configuration of BFS test and finite element mesh used for the computation (the value of d has
been magnified).

– nodal values kt and o t of variables k and o of turbulence discrete equations (30);
– nodal velocity vectors V t needed in discrete equilibrium equations (48).

6. VALIDATION OF THE MODEL ON AN ACADEMIC TURBULENT FLOW

The backward-facing step test (BFS) is a classical test often used in the literature for validation
of turbulence models. As it involves complex physical phenomena, such as wall reattachment
of sheared layers, it is a discriminant test for evaluating the performance and limitations of
numerical models. In addition, experimental results are available in the literature.

The test configuration and the mesh that has been used in the present study are presented
in Figure 5. In order to compare with the experimental measurements of Westphal et al. [44],
obtained for a nominal Reynolds number of 42000, the following parameters have been used:
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– kinematic viscosity of the fluid (air), n=1.4×10−5 m2 s−1

– step height, H=0.0508 m
– inlet average velocity, Vav=11.562 m s−1

A parabolic velocity profile has been prescribed at the inlet (Vmin=10.686 m s−1, Vmax=
12.0 m s−1), with values of k and o as indicated by Equation (18) with 6d=Vav and D=3H/2.

Along the lateral walls, the turbulent wall friction law has been used. The parameter y+ has
been fixed to 100 on the whole fluid–wall interface. At the outlet, a Neumann natural
condition is applied to 7, k, o.

Using the present ALE formulation, which is essentially non-steady state, the steady state
regime of the test is reached after convergence of a series of time steps Dt=2×10−4 s, during
which the fluid domain is not updated. The convergence is obtained after 1300 time steps (2.5
h CPU on a IBM/RS6000/390), yielding a relative precision on the velocity field equal to
8×10−5. Figure 6 illustrates the streamlines at convergence, showing the recirculation loop
behind the step.

The results have been compared with the experimental measurements of Westphal et al. [44].
Figure 7 summarizes this comparison. In this figure, the normalized horizontal velocity
U. x=6x/Vav has been plotted versus the normalized vertical co-ordinate ŷ=y/H in six
transverse sections located at various normalized horizontal co-ordinates: x̂=x/H. It can be
seen that good agreement is obtained with respect to experimental measurements and to other
results taken from the literature [45]. The position of the reattachment point is slightly
underestimated by the model (x=6H instead of x=7H experimentally). This is a well-known
result for the standard k–o model [45,46].

7. APPLICATION TO MOULD FILLING AND EXPERIMENTAL COMPARISON

7.1. Casting experiment

We present first an experimental work performed by PSA Peugeot–Citroën, on a three-
dimensional mould equipped with contact sensors. This test has served as a first confrontation

Figure 6. BFS test. Computed streamlines at convergence (isovalues of the streamfunction 8 normalized
with the flow rate Q).
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Figure 8. (a) Geometry of the mid-section of the experimental mould, with location of contact sensors.
The square cavity is 160×160 mm2. The thickness of the cavity in the normal direction is 8 mm. (b)

Two-dimensional configuration used for the simulation.

test of the numerical model. As shown in Figure 8, the geometry presents some significant
difficulties regarding flow simulation: a thin runner (8×8 mm2 in its vertical part) with a
thicker zone in its horizontal part; a BFS at the outlet of the runner, causing a free fall of the
liquid jet into the mould; a core located in the middle of the cavity, which is an obstacle to the
flow. Except for the funnel-shaped in-gate and the riser, the mould has a constant thickness of
8 mm, so that the flow can be analysed with a two-dimensional model.

An operator pours liquid grey iron in the funnel-shaped pouring gate, which is kept filled
until the end of the filling. The metal flows down (by gravity) in the runner, then drops down
into the cavity and fills it progressively. The contact sensors are activated when the metal
touches them (and remain so the rest of the time). Activation times are recorded, and the flow
advance can be approximately tracked this way (see Figure 9, first line).

In order to compare our two-dimensional simulation with the experiment, we focus the
study on the constant thickness part of the experimental mould, e.g. the runner and the cavity.
The pouring gate, in which complex flow occurs, because of its variable thickness, is
represented by a simple feeding channel, with prescribed pressure, in the simulation (Figure 8).
Of course this causes a certain loss of accuracy; as the riser thickness is much bigger than the
cavity one, the simulation stops at the riser inlet (further comparison would be irrelevant).

Because the present finite element model cannot yet take into account thermal coupling in
turbulent conditions, we have assumed isothermal laminar conditions. The following data have
been used:

Figure 7. BFS test. Axial velocity profile in different transverse sections located at various horizontal
co-ordinates. On each graphic, the normalized horizontal velocity U. x=6x/Vav is plotted versus the
normalized vertical co-ordinate ŷ=y/H. The six graphics correspond to six transverse sections located at

various normalized horizontal co-ordinates x̂=x/H.
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Figure 9. Progress of metal flow in the mould at different filling times. Lines 1 and 3 show the activated
(black filled squares) and non-activated (empty squares) contact sensors. Lines 2 and 4 show the finite

element mesh at same filling times.

– kinematic viscosity, n=2.46×10−4 m2 s−1

– specific mass, r=5695 kg m−3

– Newtonian friction coefficient, a=0.3 mm−1

– external pressure applied at inlet surface and free surface, Pd=0 Pa

The viscosity has been multiplied by a factor 100 with respect to the real one in order to
simulate the turbulence effect with the laminar-type model (the nominal Reynolds number in
the runner is about 2000). The friction coefficient has been chosen, according to the observed
metal velocity in the runner.

The simulation has needed 2850 time steps, 250 remeshings and took 32 h CPU on a
IBM/RS6000/390. Globally, the results are in good agreement with the experiment, as shown
in Figure 9. The saturation of the runner seems to be well simulated, as well as the liquid jet
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coming out of the runner. However, regarding this last point, we can see from the second
figure of activated sensors (at time 0.78 s) that they seem to indicate a thicker jet shape. The
reason for this is not clear and it is possible that the sensor indication has been perturbed by
some splashing or wetting of the walls by the jet. Anyway, the simulated flow is in good
agreement with the measurements for the rest of the filling: the evolution of the free surface is
correct and the filling time as well.

7.2. Experiment with a water model

In order to bring the previous encouraging results further and to have a deeper insight into the
capacity of the model to describe the fluid flow accurately, the formulation has been compared
with a water model in which the experimental flow can be easily observed through a
transparent mould made of plexiglas®. The experimental device is shown in Figure 10. A
similar shape has been chosen, but of different dimensions: the square cavity is 320×320 mm2

and the thickness has been taken equal to 20 mm. The experiments have been recorded with
a numerical video recorder.

The simulation has been carried out using the turbulence k–o model. As the experimental
flow rate during the beginning of the mould filling corresponds to an average velocity of 0.875
m s−1 in the runner, yielding a nominal Reynolds number of about 20000, the inlet values of
k and o have been prescribed as indicated by Equation (18): k=1.5×10−2 m2 s−2 and o=4.1
m2 s−3. Regarding the wall law, the parameter y+ has been fixed to 100.

Figure 11 shows a typical comparison between the computed and observed evolution of the
free surface. Globally, the agreement is excellent. One of the main differences is the jet
orientation. Unlike in the laminar simulation presented above, the wall law parameter has not
been deduced from the experiment since a fixed value has been used (=100). It is worth noting
that the predicted jet velocity is obviously not very far from the real one. This validates a
posteriori the choice of this value, as a lower value would have increased the friction effects
and, since the runner is quite narrow, it would have resulted in a lower predicted jet velocity.

Figure 10. Water model. Experimental set-up.
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Figure 11. Water model. Comparison between experimental flow and turbulent finite element computa-
tion.
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Figure 11 (Continued)

We can notice also that the enlargement of the jet—already observed in the casting experi-
ment—is present in the real flow, whereas the simulation does not render this effect (which
could be due again to wetting of the plexiglas® mould by water).

In Figure 12, the isovalues of the ratio nT/n are plotted, showing maximum values around
100, corresponding to the regions where the velocity gradients are maximum. It can be seen,
from the distribution of the turbulent kinetic energy k at different times, that the turbulence
decreases rapidly when the cavity fills up, especially when the core and the inlet jet become
submerged. At this stage, the use of the standard k–o model, which is normally applicable to
fully developed turbulent flows, is less and less valid. This is confirmed in the computation by
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Figure 12. Water model. Left: isovalues of the ratio between the turbulent and the nominal kinematic
viscosities nT/n ; right: computed distribution of the turbulent kinematic energy k.

more and more occurrences of negative values of k, needing arbitrary correction techniques
(Equations (58) and (59)). Obviously, in such conditions low Reynolds k–o models and an
approach to the laminar transition should be used. This is a natural extension to this work.

Finally, we can comment on the comparison between laminar and turbulent computations.
In the present case, both approaches have been used and a detailed comparison can be found
elsewhere [35]. Globally, the results are similar and it is difficult to determine which formula-
tion is better. However, the merit of the turbulent computation is to avoid the guess of an
arbitrary viscosity in order to stabilise the laminar flow model.

8. CONCLUSION

In this paper, a two-dimensional finite element formulation for non-steady state turbulent fluid
flows with free surface has been presented. It is based upon an ALE Navier–Stokes solver,
including the coupling with the turbulence k–o model. Comparisons with reference literature
results and with experimental results, obtained both in casting condition and on a water model,
have shown the efficiency of this approach.

Regarding application to the simulation of casting processes, the next improvements should
be the implementation of the thermal coupling, allowing the computation of the temperature
field in the fluid and in the mould. Further work will deal with the enrichment of the physical
model used to describe fluid flow: implementation of surface tension and wall adhesion, use of
low Reynolds k–o model. Finally, a three-dimensional extension of the present approach
should be developed.
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